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1 MODEL ARCHITECTURE
In this document, we define the details of the model architecture
required to implement the proposed model.

1.1 Extracting DINO features
We use DINO ViT8 as the backbone visual representation for our
model [Caron et al. 2021]. Transformers treat image patches as a bag
of words, and therefore an input image is split into (8, 8) patches.
This vision transformer comprises 11 self-attention blocks, where
each block outputs a 768 dimensional global context token and i.e.
768 dimensional local tokens, one for each (8, 8) patch of the image.
Note that since each of the local tokens holds information about
a single patch, our approach involves operating spatially on this
low-resolution representation from multiple DINO blocks. Given
an input image, we extract the local tokens and global token from 4
blocks, namely block 2, 5, 8, and 11, following previous work [Ranftl
et al. 2021].

1.2 Spatial Processing
1.2.1 Combining global and local tokens. Upon extracting the local
and global tokens we combine them: the local tokens contain in-
formation about a patch while the global token stores information
about the context of the image. We first combine the information in
the global token with each of the local tokens using a linear projec-
tion. This is implemented by concatenating the global token from a
given block with each local token of the respective block along the
channel dimension and passing them through a linear layer. The
output is a 768 dimensional token map of shape (768, 𝐻8 ,

𝑊
8 ).

1.2.2 Processing using convolution. We aim to create a spatial pyra-
mid by processing each of these token maps using a CNN with a
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kernel size of 1, stride of 1, and no padding to output a 256 dimen-
sional token map, maintaining the same spatial extent. Note that
there is an independent convolution layer for each of the blocks.

We further upsample some of these outputs to generate a spatial
pyramid, where the token map from the deepest blocks (block 8
and 11) are maintained at the original resolution, while token maps
corresponding to blocks 2 and 5 are bilinearly upsampled by a scale
factor of 4 and 2 respectively before being passed in a convolution
layer.

1.2.3 Cross-Similarity Feature Weighting Layer. For each token map
in the spatial pyramid generated from the previous layer, we aim to
compute a similarity-weighted embedding map where the similarity
is computed with respect to a query embedding computed based on
a "user-input" query pixel (randomly selected during training).

This proposed operator can be divided into three steps.

Computing the query embedding. Given a token map from the
spatial pyramid described earlier and the query pixel, we first apply
a LayerNorm to the token map. Then, we compute the patch index
where the query pixel belongs. Given that the embedding at this
patch index contains information for the entire patch, we further
process this embedding by concatenating the local coordinates of
the query point in the patch to the embedding and passing it through
an MLP with 1 hidden layer. The output embedding is of the same
dimension (256) as the input.

Computing the similarity. The layer-normalized token map is
passed through two independent linear layers to yield Key K and
Value V. Using the computed query embedding, we compute the
similarity to all embeddings in K, by computing a dot product fol-
lowed by a sigmoid. This results in a 1-dimensional score between
[0, 1] for each of the embeddings in the token map.

Computing the weighted embeddings. This similarity score is then
multiplied element-wise with V, yielding an embedding map of the
same spatial extent as the input token map.

1.2.4 Fusing embedding maps at multiple scales. These similarity-
weighted embeddingmaps are then fused using residual convolution
layers starting from the lowest resolution map. For every pair of
embedding maps 𝐿𝑖−1 and 𝐿𝑖 , where i is the block number in [1,
4]. We begin by processing the lowest 𝑖 block using a CNN with
2 ReLU-convolution blocks. Both convolutions output embedding
maps of the same channel and spatial dimension as the input using
a kernel size of 3, a stride of 1, and zero-padding of size 1. The
output is then bilinearly upsampled by 2x (if needed to match the
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resolution of 𝐿𝑖 ) and added to 𝐿𝑖 . The resulting embedding map is
passed through a similar 2 ReLU-convolution block, followed by an
output convolution with kernel size 1, stride of 1, and no padding.
After fusing all embedding maps of different spatial extents, we

use the resulting feature map of shape (256, 𝐻,𝑊 ) to compute a per-
pixel score using an MLP. This MLP is comprised of 3 hidden layers,
the first one outputting 256 dimensional latents, the second and third
one outputting 128 dimensional latents, and the final outputting
a single-channel score map of shape (𝐻,𝑊 ). The resulting score

map is passed through a sigmoid to get the final per-pixel similarity
scores in [0, 1].
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